
PRACTIC PAPER FOR SUMMATIVE ASSESSMENT - I, 2015 MATHEMATICS Time Allowed: 3 hours Max

Maximum Marks: 90

SECTION-A

Question numbers 1 to 4 carry one mark each

Q.1. In the given figure, triangles ADB and ADC similar. Find the value of p.

Q.2. Evaluate : $\sin 60^\circ - \cos 30^\circ$

Class – X

Q.3. In a right angled $\triangle ABC$, if $\angle B = 90^\circ$, AB = 20 cm and BC = 21 cm, find the value of sec A.

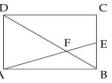
Q.4. Find the median of the following distribution :

x _i	1	2	3	4	5	6	7	8
f_i	2	4	6	5	8	0	3	2

SECTION-B

Question numbers **5** to **10** carry two marks each.

- Q.5. Determine the values of p and q so that the prime factorization of 2520 is expressible as $2^3 \times 3^P \times q \times 7$
- Q.6. Show that $5-2\sqrt{3}$ is an irrational number.
- Q.7. Solve the following pair of linear equations : y 2x = 10, 4y + x = 4
- Q.8. In a rectangle ABCD, E is a point on AB such that $AE = \frac{3}{4}AB$. If AB = 16 m and AD = 5 m, then find the length of DE.
- Q.9. If $7\sin^2\theta + 3\cos^2\theta = 4$, then find the value of $\tan \theta$.
- Q.10.In a hospital, weights of new born babies were recorded, for one month. Data is as shown :Weight of new born baby (in kg)1.4 1.81.8 2.22.2 2.62.6 3.0No of babies31561


Find the median weight.

SECTION-C

Question numbers **11** to **20** carry three marks each.

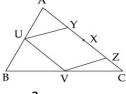
- Q.11. Show that $\frac{7\sqrt{11}}{3}$ is an irrational number.
- Q.12. Find a quadratic polynomial, the sum and product of whose zeroes are 0 and $-\frac{4}{3}$ respectively. Hence find the zeroes.
- Q.13. 3x-9y-12=0 is given. Write another linear equation, so that the lines represented by the pair are : (i) intersecting (ii)coincident (iii)parallel
- Q.14. What should be added in the polynomial $x^4 + 5x^3 + 7x^2 + 3x + 4$ so that it is completely divisible by $x^2 + 2x + 1$

Q.15. In the figure ABCD is a rectangle and E is middle point of BC. DB and AE intersect at F. Prove that DF = 2FB and AF = 2FE

- Q.16. ΔABC ~ ΔFEG. If CD and GH are respectively the bisectors of ∠ACB and ∠EGF such that D and H lie on AB and FE respectively. Then prove that
 (i) ADC = AELC = (ii) ACED = ACED
 - (i) $\triangle ADC \sim \triangle FHG$ (ii) $\triangle CBD \sim \triangle GEH$
- Q.17. Express $\cos 63^\circ + \cot 59^\circ \sec 47^\circ$ in terms of trigonometric ratios of angles between 0° and 45°
- Q.18. Prove the following identity : $(\csc \theta \sin \theta)$. $(\sec \theta \cos \theta)$. $(\tan \theta + \cot \theta) = 1$
- Q.19. In a health check up, the number of heart beats of 40 women were recorded in the following table

Number of heart beats/minute	65-69	70-74	75-79	80-84
Number of women	2	18	16	4
Find the mean of the data.				

Q.20. Weights of class IX students of a school are given in the following frequency distribution :


Weights (in kg)	35-40	40-45	45-50	50-55	55-60	60-65	65-70	
Number of students	2	9	15	25	12	6	1	
Draw a 'loss than two' ogive for the above data								

Draw a 'less than type' ogive for the above data.

SECTION-D

Question numbers 21 to 31 carry four marks each.

- Q.21. Prove that the product of any three consecutive positive integers is divisible by 6.
- Q.22. 2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone. What is the benefit of doing work in team ?
- Q.23. A sum of a two digit number and number obtained on reversing the digits is 99. If number obtained on reversing the digits is 9 more than the original number. Find the number.
- Q.24. Obtain all other zeroes of the polynomial $x^4 + x^3 6x^2 4x + 48$, if two of its zeroes are 2 and -4.
- Q.25. If $\triangle ABC \sim \triangle PQR$ and AD, PS are bisectors of corresponding angles A and P, then prove that $\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = \frac{AD^2}{PS^2}$
- Q.26. In \triangle ABC, X is any point on AC. If Y, Z, U and V are the middle points of AX, XC, AB and BC respectively, then prove that UY||VZ and UV||YZ.

- Q.27. In \triangle ABC (see figure) \angle C = 90°, AB = x units and AC = 3 units. Evaluate : x. cosB. tanA + x² sinA. secB + sinC
- Q.28. If $\sin\left(50^\circ \frac{3}{2}\alpha\right) = \cos(3\alpha 50^\circ)$, then find the value of α and hence evaluate: tan α sec α sin α - cot α sin α cos α
- Q.29. If $l \csc\theta + m \cot\theta + n = 0$ and $l' \csc\theta + m' \cot\theta + n' = 0$, show that $(mn' m'n)^2 (nl' n'l)^2 = (lm' l'm)^2$
- Q.30. For the following distribution, draw a 'less than type' ogive and a 'more than type' ogive :

Marks	0-10	10-20	20-30	30-40	40-50
Number of students	15	25	25	38	17

Also, find median from the curves.

Q.31. A school organised a dewali mela. Ages of persons, who visited the mela are given in the following frequency distribution :

Ages (in years)	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Number of persons	50	400	108	530	47	10	5

Find the mean and median age of the above distribution.