Atomic Energy Central Schoool No.4 Rawatbhata

Multiple Choice Questions Test (November-December 2018-19)

M:M: 60 Time Class XII, Physics, Chemistry, Mathematics1 Hour

1	. A particle is proportional t	article is dropped from a height <i>H</i> . The de Broglie wavelength of the particle as a function of height is							
	A) H	B)	$H^{1/2}$	C)	H^0	D)	$H^{-1/2}$		
2	The wavelen MeV energy		needed to remove a	proton fron	n a nucleus which	is bound to	the nucleus with 1		
	A) 1.2 nn	n B)	$1.2 \times 10 - 3 \text{ nm}$	n C)	$1.2 \times 10{-}6 \text{ nm}$	D)	1.2×10^1 nm		
3	 chamber. Then A)no electrons will be emitted as only photons can emit electrons. B) electrons can be emitted but all with an energy, E0 C) electrons can be emitted with any energy, with a maximum of E0 –θ, where θis the work function). D) electrons can be emitted with any energy, with a maximum of E0. 								
	A) remain	as constant. B)	time.	,	decreases with time.	D)	increases and decreases periodically.		
5	will be about		_		_		asis of Bohr's model,		
	A) 53 pm	B)	27 pm	C)	18 pm	D)	13 pm		
6	electrons. Thi	is is because	ot be directly applie				•		
	not bei	electrons B) ing subject ntral force.	of the electrons colliding with each other	C)	of screening effects	D)	the force between the nucleus and an electron will no longer		
7	model. Angul	ar momentum is	tron in the H-atom h	there will b	an angular momentum = h, according to the simple Bohr ere will be infinitely many orbits with the vector pointing in				
	A) because model gi	Bohr B) ives t values of	•		angular moment must be in the direction of spin electron.		because electrons go around only in horizontal orbits.		
8	O ₂ molecule A) is not B) is as i C) cance	consists of two important became important as elected the repulsive		re short-ranginding the tetween the	ged. wo atoms. nuclei.		uclei of the two atoms		
9	Two H atoms		tate collide inelastic	ally. The m	naximum amount b	y which th	heir combined kinetic		
	A) 10.20		20.40 eV	C)	13.6 eV	D)	27.2 eV		
10	A set of atom	ns in an excited	state decays.						
	any of states v		into a lower stat only when excite by an external electricfield.		all together simultaneously into a lower state.	D)	to emit photons only when they collide.		
11	Suppose we material with	consider a large a half life of 1 y	number of container rear. After 1 year, have 5000 atoms of		taining initially 10	000 atoms	of a radioactive		

B) all the containers will contain the same number of atoms of the material but that number will only be

	approximately 5000.								
	C		l in gene	ral have different	numbei	rs of the atoms of the	material	I but their average will	
	be close to 5000. D) none of the containers can have more than 5000 atoms.								
12	When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom								
	A)	do not change for any type of radioactivity.	ra	tange for $\alpha \& \beta$ dioactivity but not γ radioactivity.	C)	change for α radioactivity but not for others	D)	change for β radioactivity but not for others.	
13	Heav	-	more neu	trons than protons	s. This i	is because of the fact	that		
	A)	neutrons are heavier than protons.	B)	electrostatic force between protons are repulsive.	C)	neutrons decay into protons through beta decay.	D)	nuclear forces between neutrons are weaker than that between protons.	
14	In a nuclear reactor, moderators slow down the neutrons which come out in a fission process. The moderator used have light nuclei. Heavy nuclei will not serve the purpose because								
	A)	they will B)		ei will not serve ti collision of	ne purp C)	net weight of the	D)	substances with heavy	
	/	break up.		s with heavy	Ο,	reactor would be	2)	nuclei do not occur in	
			nuclei v	will not slow		unbearably high.		liquid or gaseous state	
1.5	In E	Oohn model the byde	at room temperature.						
15	. 111 E	Bohr model the hydo	gen atom	i, the lowest offil	corresp	olius to			
	A)	Infinite energy	B)	zero energy	C)	The minimum energy	y D)	The maximum energy	
16	. The	control rod in a nuc	lear react	tor is made of					
	A)	uranium	B)	Cadmium	C)	plutomium	D)	graphite	
17			ired to io	nige the hydrogen	atom t	he energy required to	remove	the electron form n=2	
	state i	Zero	B)	10.2 eV	C)	6.8 eV	D)	3.4 eV	
18	which	n of the following ca	n not be	emitted in radioac	tive dec	cay of the substance?			
	A)	Helium-nucleus	B)	Electrons	C)	Neutrions	D)	Proton	
19						electron in the ground when electron make 6		osords Photon of energy ward transition	
20		half life time of a rac	,		,	as the mean life of	,	adioactive element Y.	
20		lly they have same n			ne same	e as the mean me of a	momer i	adioactive element 1.	
	A)	y will decay faster thean x	B)	x will decay faster then y	C)	x and y will decay at the same rate at all time	D)	x and y will decay at the same rate intially.	
21	The e	lectronic structure of	f chromit	ım is					
	A)	$3d^64s^0$	B)	$3d^54s^1$	C)	$3d^44s^2$	D)	$3d^34s^24p^1$	
22	One o	of the characteristics	of transit	tion metals to from	n the co	omplex ion is			
23	A) Whice	Having unpaired electrons in d- subshell ch of the ions will gi	B)	Having paired electrons in d- subshell less aqueous solu	C)	Providing empty d-orbitals	D)	Having small charge/size ratio	
23	A)	Ni ²⁺	В)	Fe ²⁺	C)	Cu^{2+}	D)	Cu^+	
2.4			•		ŕ	Cu	D)	Cu	
24		h of the following ha		-		>. 3+	D :	G +	
	A)	Zn^+	B)	Fe^{2+}	C)	Ni ³⁺	D)	Cu^+	
25	Whic	ch of the following b	elongs to	the actinide serie	s of ele	ements?			
	A)	Y	B)	Та	C)	U	D)	Ac	

26	Manganese exhibits maximum oxidation state in									
	A)	K ₂ MnO ₄	B)	KMnO ₄	C)	MnO_2	D)	Mn ₃ O ₄		
27	Whic	h forms the intersti	itial comp	ounds?						
	A)	Fe	B)	Co	C)	Ni	D)	All		
28	Whic	h lanthanide is mo	st commo	nly used?						
	A)	Lanthanum	B)	Nobelium	C)	Thorium	D)	Cerium		
29	The v	valancy of Cr in the	e complex	$\left[\text{Cr}(\text{H}_2\text{O})_4\text{Cl}_2\right]^+$	is					
	A)	1	B)	3	C)	5	D)	6		
30	Whic									
	A)	Cu ⁺	B)	Co ²⁺	C)	Ni ²⁺	D)	Fe ³⁺		
31			of KMnO ₄					in an acidic solution is		
			,	3/5	C) Ni D) All C) Thorium D) Cerium is C) 5 D) 6 vement? C) Ni ²⁺ D) Fe ³⁺ ed to react with one mole of sulphite in an acidic solution is C) 4/5 D) 1 C) Double salt D) Complex salt cinvolved is C) d^3sp^2 D) dsp^2 ed to each other as C) Coordination D) Optical isomers isomers in solution? C) 3 D) 2 annine complex with excess of ammonia? C) Cd^{2+} D) Na ⁺ C) -1 D) -3 C) F D) Ethylene diamine c? C) $[Ni(CN)_4]^2$ D) None of these complex? C) d^6 (low spin) D) All of these and $\frac{x}{a} + \frac{y}{b} = 1$ is C) $\frac{1}{2}ab$ D) $\frac{\pi ab}{4} - \frac{ab}{2}$ by = 1/x & +ve x-axis is C) 1/2 sq units D) 1 sq unit covern x = 0 & x = π is,					
32		Potassium ferrocyanide is a								
	A)	Normal salt	B)	Mixed salt	C)	Double salt	D)	Complex salt		
33				=				•		
		•		•			D)	dsp^2		
34	[Co($NH_3)_5Br]SO_4$ and [$[Co(NH_3)]$	₅ SO ₄] Br are relate	ed to eac	h other as				
	A)		B)	•	C)		D)	Optical isomers		
35	How		duced fro		in soluti					
	A)	6	B)	4	C)	3	D)	2		
36	Which one of the following cationdoesnotform an ammine complex with excess of ammonia?									
	A)	Ag^+	B)	Cu^{2+}	C)	Cd^{2+}	D)	Na^+		
37	The	oxidation number of	of cobalt i	n K[Co(CO) ₄] is						
	A)	+1	B)	+3	C)	-1	D)	-3		
38	Whic	ch of the following	g is π -acid	ligand?						
	A)	NH ₃	B)	CO	C)	F	D)	Ethylene diamine		
39	Whic	ch of the following	has squar	e planar structure	?					
	A)	$[NiCl_4]^{2-}$	B)	[Ni(CO) ₄]	C)	$\left[\text{Ni}(\text{CN})_4\right]^2$	D)	None of these		
40	Whic	ch of the following	shall for	n an octahedral co	omplex?					
		d ⁴ (low spin)	B)	d ⁸ (high spin)	C)	d ⁶ (low spin)	D)	All of these		
41	The	area between th	e ellipse	$\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ and	$id^{\frac{x}{x}} +$	$\frac{y}{h} = 1$ is				
	A)	$\frac{1}{\pi ab}$	B)	$\frac{1}{2}ab$	C)	$\frac{1}{2}ab$	D)	$\frac{\pi ab}{ab} = \frac{ab}{ab}$		
42		_						4 2		
42							D)	1 ca unit		
43		-	ŕ	-		1	D)	r sq umt		
1 3		_		• •			D)	1 sa unit		
44	,	•	,	-	,	•		1 sq umi		
77	mea	or region bould	aca by C	uive y - x + 1	& HHCS	5 A – 2 & A – 3 IS	,			

	A)	7/2 sq units	B)	9/2 sq units	C)	11/2 sq units	D)	13/2 sq units	
45	The	The unit vector perpendicular to the vectors $i^+ j$ and $i^- j$ forming aright handed system is							
	A)	k^	B)	<i>− k</i> ^	C)	$\frac{\hat{i}+\hat{j}}{\sqrt{2}}$	D)	$\frac{\stackrel{\wedge}{i-j}}{\sqrt{2}}$	
46	If \vec{a}	and $ec{b}$ are unit v	ectors, th	nen what is the	angle 1	between themfor3	$\vec{a} \cdot \vec{b}$ to	be a unit vector?	
	A)	30°	B)	45°	C)	60°	D)	90°	
47		-				ne two sides AB a	ndAC,	, respectively of a	
		3C. The length of				/13	D)	NI	
	A)	$\frac{\sqrt{34}}{2}$		2		√18	D)	None of these	
48		iber of vectors of		ngth&⊥ to vect		$=2i^+\hat{j}+2k^-$ & $\vec{b}=$			
	A)	one	B)	two	C)	three	D)	infinite	
49	If ā,Ī	b, c are unit vec			$\vec{x} = \vec{0}$	evaluate $\vec{a}.\vec{b} + \vec{b}.\vec{c}$	+ c . a		
	A)	1	,	-2/3	C)	-3/2	D)	None of these	
50	If ∣ä́z	$ \vec{a} = 4$ and $ \vec{a} = 1$	2 then	$\vec{a} ^2 \vec{b} ^2 = ?$					
	A)	2	B)	6	<u>C)</u>	8	D)	20	
51	The	solution of diffe	erential e	equation $\frac{dy}{dx}$ +	$\frac{1-y^2}{1-y^2} =$	= 0 is			
	A)ta	$n^{-1}x+\cot^{-1}x=c$	B)sin ⁻¹ x	ax	$1-x^2$) $\sec^{-1}x$	+cosec ⁻¹ x=cD)No	one		
52						$\frac{y}{x} + y = 2 \log x$ is			
	A)	X	B)	e^{x}	$C)^{d}$	$\log x$	D)	log(log x)	
53	The	differential equ	ation (x+	-y) $dx +xdy=0$	is				
51	A)homogenous, not linear B)linear, not homogenousC)both homogenous & linear D)none The order of differential equation of all circles of given radius a is								
54			-			_	D)	4	
<i>55</i>	A)	1	B)	2	C)	3	D)	4	
55		order and degr							
		1, 2	,	2, 2	,	2, 1	D)	4, 2	
56	Solı	ution of differer	itial equa	ation $2xdy/dx - 1$	y = 3 s	hows a family of			
	A)	straight lines	B)	circles	C)	parabolas	D)	ellipses	
57	If $\frac{dy}{dz}$	$\frac{y}{x} = y + 3 > 0$ and	y(0)=2,	then y(ln2) is	equal t	О			
	A)	13	B)	-2	C)	7	D)	5	
58	Solu	ution of the diff	. equatio	$n\cos xdy = y(s)$	sin x -	y)dx, $0 < x < \frac{\pi}{2}$, is			
	A)		B)	$\sec x = \tan x$	C)	$ytan x = sec^{2}x$	D)	$\tan x = (\sec x +$	
59		+ c)y		+c		+c		c)y	
37	The	solution of the	differenti	ial equation is $\frac{a}{c}$	$\frac{dy}{dx} = \frac{1}{2}$	$\frac{x + xy + y}{x^2}$ is			
	A)	$\tan^{-1}\frac{x}{y} = \log y$	B)	$\tan^{-1}\frac{y}{x} = \log x$	(C)	$\tan^{-1}\frac{x}{y} = \log x$	D)	$\tan^{-1}\frac{y}{x} = \log y$	
60	Diff	ferential equation		**		,		i.	
	A)	$\frac{dy}{dx} = x$	B)	$\frac{dy}{dx} = y$	C)	$x\frac{dy}{dx} + y = 0$	D)	$x\frac{dy}{dx} - y = 0$	

Answer Key

1	2	3	4	5	6	7	8	9	10
D	В	D	A	С	A	A	A	A	A
11	12	13	14	15	16	17	18	19	20
C	В	В	В	C	В	D	D	C	A
21	22	23	24	25	26	27	28	29	30
В	C	D	В	C	В	D	D	В	A
31	32	33	34	35	36	37	38	39	40
A	D	В	A	C	D	C	В	C	D
41	42	43	44	45	46	47	48	49	50
		d	c	a	a	b	d	a	d
51	52	53	54	55	56	57	58	59	60
		c	a	b	c	d	b	d	c