Atomic Energy Central Schoool No.4 Rawatbhata

Multiple Choice Questions Test (November-December 2018-19)

λ	I:M: 60 Time	impie enoi	-	`	Chemistry, Biol		1 Hour				
1	. A particle is dropped from a height H. The de Broglie wavelength of the particle as a function of height is										
	proportional to						· ·				
	A) <i>H</i>	B)	$H^{1/2}$	C)	H^0	D)	$H^{-1/2}$				
2	MeV energy is no	early	eeded to remove a pro								
	A) 1.2 nm	B)	$1.2 \times 10 - 3 \text{ nm}$	C)	1.2×10 –6 nm	D)	1.2×10^1 nm				
3	chamber. Then B) electrons C) electrons D) electrons An electron is mo	A)no electro can be emitte can be emitte can be emitte	ns will be emitted as d but all with an ener d with any energy, w d with any energy, w	only phorgy, E0 with a max	stons can emit elect stimum of $E0 - \theta$, which improves the entire of $E0$.	frons. here θ is the	kept in an evacuated the work function). Then it's de Broglie				
	wavelength A) remains co	natant D)	increases with	C	decreases with	D)	inarassas and				
	A) Temanis Co	onstant. B)	time.	C)	time.	D)	increases and decreases periodically.				
5		radius as a0 =	53pm, the radius of	Li++ ion	in its ground state	, on the ba	sis of Bohr's model,				
	will be about A) 53 pm	B)	27 pm	C)	18 pm	D)	13 pm				
_	, •	ŕ	-		•	•	•				
6	The simple Bohr This is because	model cannot	be directly applied t	to calcula	te the energy levels	s of an ato	m with many electrons.				
7	A) of the electron not being sto a central	subject 1 force.	of the electrons colliding with each other	,	of screening effects	D)	the force between the nucleus and an electron will no longer				
7							g to the simple Bohr				
		model. Angular momentum is a vector and hence there will be infinitely many orbits with the vector pointing in all possible directions. In actuality, this is not true,									
	A because Bo model gives incorrect val angular mor	ohr B) lues of	because only one of these would have a minimum energy	C)	angular momentumust be in the direction of spin of electron.		because electrons go around only in horizontal orbits.				
8	O ₂ molecule con A) is not imp B) is as imp C) cancels the	sists of two ox portant becaus ortant as elect he repulsive el	0.	nolecule, short-rang ding the t ween the	nuclear force betw ged. wo atoms. nuclei.		ons.				
9	Two H atoms in	the ground sta	te collide inelastical	ly. The m	aximum amount by	y which th	eir combined kinetic				
	energy is reduced A) 10.20 eV	l is B)	20.40 eV	C)	13.6 eV	D)	27.2 eV				
10	A set of atoms in	an excited sta	ate decays.								
	A) in general any of the states with lower ener	l	into a lower state only when excited by an external electric field.	C)	all together simultaneously into a lower state.	D)	to emit photons only when they collide.				
11	lower energy. electric field.										
	be close to D) none of t		can have more than 5	5000 aton	18.						
12			dergoes a radioactive			y levels of	the atom				
	A) do not cha	nge B)	change for α & β	C)	change for α	D)	change for β				

		for any type of		dioactivity but not		radioactivity but		radioactivity but not
10		radioactivity.	for γ radioactivity.		not for others			for others.
13		-		-	. This i	is because of the fact t	hat	
	(a) ne A)	eutrons are heavier that neutrons are	an proto B)	electrostatic force	C)	neutrons decay	D)	nuclear forces between
	11)	heavier than	D)	between protons	C)	into protons	D)	neutrons are weaker than
		protons.		are repulsive.		through beta decay.		that between protons.
14						hich come out in a fiss	ion pro	cess. The moderator
		have light nuclei. Hea			<u> </u>		D)	1
	A)	they will B) break up.		collision of ns with heavy	C)	net weight of the reactor would be	D)	substances with heavy nuclei do not occur in
		отсак ир.		will not slow		unbearably high.		liquid or gaseous state
			them d	own.				at room temperature.
15	. In E	Bohr model the hydog	gen atom	, the lowest orbil	corresp	onds to		
	A)	Infinite energy	B)	zero energy	C)	The minimum energy	D)	The maximum energy
16	. The	control rod in a nucl	ear react	tor is made of				
	A)	uranium	B)	Cadmium	C)	plutomium	D)	graphite
17	If 13	.6 eV energy is requi	red to io	nige the hydrogen	atom t	he energy required to	remove	the electron form n=2
	state i							
	A)	Zero	B)	10.2 eV	C)	6.8 eV	D)	3.4 eV
18	which	n of the following can	not be	emitted in radioact	tive dec	cay of the substance?		
	A)	Helium-nucleus	B)	Electrons	C)	Neutrions	D)	Proton
19	The i	ionigation Potential o	f hydrog	gen atom is 13.6 e	V. An e	electron in the ground	state ab	sords Photon of energy
	12.75					when electron make a		
	A)	1	B)	2	C)	6	D)	4
20	The l	half life time of a radi	idactive	elements of x is th	ne same	as the mean life of an	other ra	adioactive element Y.
		lly they have same nu						
	A)	y will decay	B)	x will decay	C)	x and y will	D)	x and y will decay at
		faster thean x		faster then y		decay at the same rate at all time		the same rate intially.
21	The e	lectronic structure of	chromiu	ım is		rate at all time		
	A)	$3d^{6}4s^{0}$	B)	$3d^54s^1$	C)	$3d^{4}4s^{2}$	D)	$3d^34s^24p^1$
22	One o	of the characteristics of	of transit	tion metals to fron	the co	omplex ion is		•
	A)	Having unpaired	B)	Having paired	C)	Providing empty	D)	Having small
	A)	electrons in d-	D)	electrons in d-	C)	d-orbitals	D)	charge/size ratio
		subshell		subshell				2 8
23	Whic	ch of the ions will giv	e colour	less aqueous solut	ion?			
	A)	Ni^{2+}	B)	Fe^{2+}	C)	Cu^{2+}	D)	Cu^+
24	Whic	h of the following ha	s more u	inpaired electrons?	?			
	A)	$\mathbf{Zn}^{^{+}}$	B)	Fe^{2+}	C)	Ni^{3+}	D)	Cu^+
25	Whic	ch of the following be	elongs to	the actinide series	s of ele	ments?		
	A)	Y	B)	Ta	C)	U	D)	Ac
26	Mang	ganese exhibits maxii	mum oxi	idation state in				
	A >		D)		<i>C</i>)		D)	
	A)	K_2MnO_4	B)	KMnO ₄	C)	MnO_2	D)	Mn_3O_4
27	Whic	h forms the interstitia	ıl compo	ounds?				
	A)	Fe	B)	Co	C)	Ni	D)	All
28	Whic	h lanthanide is most o	common	ly used?				

	A)	Lanthanum	B)	Nobelium	C)	Thorium	D)	Cerium	
29	The s	The valancy of Cr in the complex $[Cr(H_2O)_4Cl_2]^+$ is							
	A)	1	B)	3	C)	5	D)	6	
30	Whic	h of the following ion	ns has z	ero magnetic move	ement?				
	A)	Cu ⁺	B)	Co ²⁺	C)	Ni ²⁺	D)	Fe^{3+}	
31								in an acidic solution is	
	A)	2/5	B)	3/5	C)	4/5	D)	1	
32	Potas	sium ferrocyanide is	a						
	A)	Normal salt	B)	Mixed salt	C)	Double salt	D)	Complex salt	
33	In th	e formation of K ₄ [Fe	(CN) ₆],	the hybridisation i	involved	l is			
	A)	sp^2	B)	d^2sp^3	C)	d^3sp^2	D)	dsp^2	
34	[Co(NH ₃) ₅ Br]SO ₄ and [Co	o(NH ₃) ₅	SO ₄] Br are related	d to each	n other as		1	
	A)	Ionization	B)	Linkage	C)	Coordination	D)	Optical isomers	
35	How	isomers many ions are produ	iced froi	isomers	n solutio	isomers			
	A)	6	В)	4	C)	3	D)	2	
36	,	h one of the followin			,				
30	A)	Ag ⁺	B)	Cu ²⁺	C)	Cd ²⁺	D)	Na ⁺	
37	ĺ	oxidation number of			C)	Cu	D)	Na	
31	A)	+1	B)	+3	C)	-1	D)	-3	
38	,	ch of the following is			C)	-1	D)	-3	
30		_	<i>п-аста</i> В)	СО	C)	w-	D)	Ethylene diamine	
39	A)	NH ₃ ch of the following ha			,	F	D)	Euryrene diamine	
39	A)	_	_	_		22/02/2012	D)	None of these	
40		$[NiCl_4]^{2^2}$ ch of the following sh		[Ni(CO) ₄]		$[Ni(CN)_4]^2$	D)	None of these	
40					_	.6	D)	All of these	
41	A)	d ⁴ (low spin)	B)	d ⁸ (high spin)		d ⁶ (low spin)	D)		
41		n one population is h					_		
42	A)	Amensalism	B)	Predation	C)	Protocooperation	D)	Parasitism	
42		y of trends of human			C)	D 1	D)	77.1	
42	A)	Biography	B)	Psychology	C)	Demography	D)	Kalography	
43	•	population explosion			<i>a</i> \	100	D'	250	
4.4	A)	500 years	B)	300 years	C)	100 years	D)	250 years	
44		opposite forces operaduce at a rate. The fo	_	-		a population. One of	them r	elates to ability to	
	A)	Fecundity	B)	Biotic potential	C)	Environmental resistance	D)	Morbidity	
45	July	11 is observed as:		potentiai		resistance			
	A)	World population	B)	No Tobacco	C)	World	D)	World Health Day	
		Day		Day		Environment Day			
46	Halo	phytes are grown in:							
	A)	Salty soil or saline soil	B)	Near the river	C)	Rainy water	D)	Desert	
		Samic Son							
					3				

47	Consider the following four conditions (1—4) and select the correct pair of them as adaptation to environment in desert lizards. the conditions:								
		urrowing in soil to es						dy during high temperature	
	A) 3	.Bask in sun when te 3 and 4	mperat B)	ure is low 1 and 3	4.J C)	Insulating body due t 2 and 4	o thic D)	k fatty dermis 1 and 2	
48	white	coloured like albino	s. Whic	ch of the following	terms w	ill you use to describ	e the		
	A)	Mutated	B)	Defoliated	C)	Embolised	D)	Etiolated	
49	In ar	n ecosystem:							
	A)	Movement of energy is unidirectional	B)	Energy cycling is an independent process	C)	Energy cycling & nutrient cycling a coupled process	D)	Micro & macronutrients cycle at same pace	
50	Whi	ch of the pairs is mis	matche	d?					
	A)	Biomass burning – Release of CO ₂	B)	Fossil fuel burning – Release of CO ₂	C)	Nuclear power – Radioactive wastes	D)	Solar energy – Greenhouse effect	
51	Whic	th one of the followir	ng is no	t used for construct	tion of e	cological pyramids?			
50	A)	Number of individuals	B)	Rate of energy flow	C)	Dry weight	D)	Fresh weight	
52	Whi	ch one of the follows	ng type	•	•	-	evel 1	n a pond ecosystem?	
	A)	Phytoplankton	B)	Fish	C)	Zooplanktons	D)	Frogs	
54	E C E	C) Predator is an org	elations ganism anism w	ship in which one s that catches and kil which always lives i	species is lls other inside th	s benefitted while the organism for food e body of other organ			
	A)	It occurs on a deforested site	B)	It begins on a bare rock	C)	It follows primary succession	D)	It is similar to primary succession except that it has relatively fast pace.	
55	The	first stable product o	f fixatio	on of atmospheric r	nitrogen	in leguminous plants	is:		
	A)	NO_2^-	B)	Ammonia	C)	Glutamate	D)	NO_3^-	
56	Wha	t is common to follo	wing pl	ants: Nepenthes, P.	silotum,	Rauwolfia, Aconitum	?		
	A)	All are ornamental plants	B)	All are phylogenic link species	C)	All are prone to over - exploitation	D)	All are exclusively present in the Eastern Himalayas	
57	Whi	ch one of the followi	ng fish	is introduced in Inc	dia by fo	reigners?			
	A)	Labeo rohita	B)	Mystus singhala	C)	Clarius betrachus	D)	Pomphret	
58	Whi	ch one of the hotspot	of bio-	diversity?					
	A)	Eastern Ghats	B)	Western Ghats	C)	Aravalli Hills	D)	Indogangatic plain	
59				other extremely co	old north	heat for the duration ern regions move to : bett National Park		ot summer, thousands of Keolado National Park	
60	The Periyar sanctuary is located in:								
	A)	Tamil Nadu	B)	Karnataka	C)	Kerala	D)	Ehrenberg	
			,				,	-	

1	2	3	4	5	6	7	8	9	10
D	В	D	A	C	A	A	A	A	A
11	12	13	14	15	16	17	18	19	20
C	В	В	В	C	В	D	D	C	A
21	22	23	24	25	26	27	28	29	30
В	C	D	В	C	В	D	D	В	A
31	32	33	34	35	36	37	38	39	40
A	D	В	A	C	D	C	В	C	D
41	42	43	44	45	46	47	48	49	50
a	С	d	С	a	a	b	d	a	d
51	52	53	54	55	56	57	58	59	60
С	b	c	a	b	С	d	b	d	c